3.243 \(\int \frac{\tan ^6(e+f x)}{(a+b \tan ^2(e+f x))^3} \, dx\)

Optimal. Leaf size=153 \[ \frac{\sqrt{a} \left (3 a^2-10 a b+15 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a}}\right )}{8 b^{5/2} f (a-b)^3}-\frac{a (3 a-7 b) \tan (e+f x)}{8 b^2 f (a-b)^2 \left (a+b \tan ^2(e+f x)\right )}-\frac{a \tan ^3(e+f x)}{4 b f (a-b) \left (a+b \tan ^2(e+f x)\right )^2}-\frac{x}{(a-b)^3} \]

[Out]

-(x/(a - b)^3) + (Sqrt[a]*(3*a^2 - 10*a*b + 15*b^2)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a]])/(8*(a - b)^3*b^(5/
2)*f) - (a*Tan[e + f*x]^3)/(4*(a - b)*b*f*(a + b*Tan[e + f*x]^2)^2) - (a*(3*a - 7*b)*Tan[e + f*x])/(8*(a - b)^
2*b^2*f*(a + b*Tan[e + f*x]^2))

________________________________________________________________________________________

Rubi [A]  time = 0.229099, antiderivative size = 153, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3670, 470, 578, 522, 203, 205} \[ \frac{\sqrt{a} \left (3 a^2-10 a b+15 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a}}\right )}{8 b^{5/2} f (a-b)^3}-\frac{a (3 a-7 b) \tan (e+f x)}{8 b^2 f (a-b)^2 \left (a+b \tan ^2(e+f x)\right )}-\frac{a \tan ^3(e+f x)}{4 b f (a-b) \left (a+b \tan ^2(e+f x)\right )^2}-\frac{x}{(a-b)^3} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^6/(a + b*Tan[e + f*x]^2)^3,x]

[Out]

-(x/(a - b)^3) + (Sqrt[a]*(3*a^2 - 10*a*b + 15*b^2)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a]])/(8*(a - b)^3*b^(5/
2)*f) - (a*Tan[e + f*x]^3)/(4*(a - b)*b*f*(a + b*Tan[e + f*x]^2)^2) - (a*(3*a - 7*b)*Tan[e + f*x])/(8*(a - b)^
2*b^2*f*(a + b*Tan[e + f*x]^2))

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(a*e^(2
*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c - a*d)*(p + 1)), x] + Dist[e^(2
*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) +
(a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 578

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[(g^(n - 1)*(b*e - a*f)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c -
 a*d)*(p + 1)), x] - Dist[g^n/(b*n*(b*c - a*d)*(p + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*S
imp[c*(b*e - a*f)*(m - n + 1) + (d*(b*e - a*f)*(m + n*q + 1) - b*n*(c*f - d*e)*(p + 1))*x^n, x], x], x] /; Fre
eQ[{a, b, c, d, e, f, g, q}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, 0]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tan ^6(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^3} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^6}{\left (1+x^2\right ) \left (a+b x^2\right )^3} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{a \tan ^3(e+f x)}{4 (a-b) b f \left (a+b \tan ^2(e+f x)\right )^2}+\frac{\operatorname{Subst}\left (\int \frac{x^2 \left (3 a+(3 a-4 b) x^2\right )}{\left (1+x^2\right ) \left (a+b x^2\right )^2} \, dx,x,\tan (e+f x)\right )}{4 (a-b) b f}\\ &=-\frac{a \tan ^3(e+f x)}{4 (a-b) b f \left (a+b \tan ^2(e+f x)\right )^2}-\frac{a (3 a-7 b) \tan (e+f x)}{8 (a-b)^2 b^2 f \left (a+b \tan ^2(e+f x)\right )}-\frac{\operatorname{Subst}\left (\int \frac{-a (3 a-7 b)+\left (-3 a^2+7 a b-8 b^2\right ) x^2}{\left (1+x^2\right ) \left (a+b x^2\right )} \, dx,x,\tan (e+f x)\right )}{8 (a-b)^2 b^2 f}\\ &=-\frac{a \tan ^3(e+f x)}{4 (a-b) b f \left (a+b \tan ^2(e+f x)\right )^2}-\frac{a (3 a-7 b) \tan (e+f x)}{8 (a-b)^2 b^2 f \left (a+b \tan ^2(e+f x)\right )}-\frac{\operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\tan (e+f x)\right )}{(a-b)^3 f}+\frac{\left (a \left (3 a^2-10 a b+15 b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\tan (e+f x)\right )}{8 (a-b)^3 b^2 f}\\ &=-\frac{x}{(a-b)^3}+\frac{\sqrt{a} \left (3 a^2-10 a b+15 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a}}\right )}{8 (a-b)^3 b^{5/2} f}-\frac{a \tan ^3(e+f x)}{4 (a-b) b f \left (a+b \tan ^2(e+f x)\right )^2}-\frac{a (3 a-7 b) \tan (e+f x)}{8 (a-b)^2 b^2 f \left (a+b \tan ^2(e+f x)\right )}\\ \end{align*}

Mathematica [A]  time = 2.17079, size = 142, normalized size = 0.93 \[ \frac{\frac{\sqrt{a} \left (3 a^2-10 a b+15 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a}}\right )}{b^{5/2}}-\frac{a (a-b) \sin (2 (e+f x)) \left (3 \left (a^2-4 a b+3 b^2\right ) \cos (2 (e+f x))+3 a^2-2 a b-9 b^2\right )}{b^2 ((a-b) \cos (2 (e+f x))+a+b)^2}-8 (e+f x)}{8 f (a-b)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^6/(a + b*Tan[e + f*x]^2)^3,x]

[Out]

(-8*(e + f*x) + (Sqrt[a]*(3*a^2 - 10*a*b + 15*b^2)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a]])/b^(5/2) - (a*(a - b
)*(3*a^2 - 2*a*b - 9*b^2 + 3*(a^2 - 4*a*b + 3*b^2)*Cos[2*(e + f*x)])*Sin[2*(e + f*x)])/(b^2*(a + b + (a - b)*C
os[2*(e + f*x)])^2))/(8*(a - b)^3*f)

________________________________________________________________________________________

Maple [B]  time = 0.026, size = 351, normalized size = 2.3 \begin{align*} -{\frac{5\,{a}^{3} \left ( \tan \left ( fx+e \right ) \right ) ^{3}}{8\,f \left ( a-b \right ) ^{3} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{2}b}}+{\frac{7\,{a}^{2} \left ( \tan \left ( fx+e \right ) \right ) ^{3}}{4\,f \left ( a-b \right ) ^{3} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{2}}}-{\frac{9\,ab \left ( \tan \left ( fx+e \right ) \right ) ^{3}}{8\,f \left ( a-b \right ) ^{3} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{2}}}-{\frac{3\,{a}^{4}\tan \left ( fx+e \right ) }{8\,f \left ( a-b \right ) ^{3} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{2}{b}^{2}}}+{\frac{5\,{a}^{3}\tan \left ( fx+e \right ) }{4\,f \left ( a-b \right ) ^{3} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{2}b}}-{\frac{7\,{a}^{2}\tan \left ( fx+e \right ) }{8\,f \left ( a-b \right ) ^{3} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{2}}}+{\frac{3\,{a}^{3}}{8\,f \left ( a-b \right ) ^{3}{b}^{2}}\arctan \left ({b\tan \left ( fx+e \right ){\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}-{\frac{5\,{a}^{2}}{4\,f \left ( a-b \right ) ^{3}b}\arctan \left ({b\tan \left ( fx+e \right ){\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}+{\frac{15\,a}{8\,f \left ( a-b \right ) ^{3}}\arctan \left ({b\tan \left ( fx+e \right ){\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}-{\frac{\arctan \left ( \tan \left ( fx+e \right ) \right ) }{f \left ( a-b \right ) ^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^6/(a+b*tan(f*x+e)^2)^3,x)

[Out]

-5/8/f*a^3/(a-b)^3/(a+b*tan(f*x+e)^2)^2/b*tan(f*x+e)^3+7/4/f*a^2/(a-b)^3/(a+b*tan(f*x+e)^2)^2*tan(f*x+e)^3-9/8
/f*a/(a-b)^3/(a+b*tan(f*x+e)^2)^2*b*tan(f*x+e)^3-3/8/f*a^4/(a-b)^3/(a+b*tan(f*x+e)^2)^2/b^2*tan(f*x+e)+5/4/f*a
^3/(a-b)^3/(a+b*tan(f*x+e)^2)^2/b*tan(f*x+e)-7/8/f*a^2/(a-b)^3/(a+b*tan(f*x+e)^2)^2*tan(f*x+e)+3/8/f*a^3/(a-b)
^3/b^2/(a*b)^(1/2)*arctan(b*tan(f*x+e)/(a*b)^(1/2))-5/4/f*a^2/(a-b)^3/b/(a*b)^(1/2)*arctan(b*tan(f*x+e)/(a*b)^
(1/2))+15/8/f*a/(a-b)^3/(a*b)^(1/2)*arctan(b*tan(f*x+e)/(a*b)^(1/2))-1/f/(a-b)^3*arctan(tan(f*x+e))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^6/(a+b*tan(f*x+e)^2)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.7163, size = 1646, normalized size = 10.76 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^6/(a+b*tan(f*x+e)^2)^3,x, algorithm="fricas")

[Out]

[-1/32*(32*b^4*f*x*tan(f*x + e)^4 + 64*a*b^3*f*x*tan(f*x + e)^2 + 32*a^2*b^2*f*x + 4*(5*a^3*b - 14*a^2*b^2 + 9
*a*b^3)*tan(f*x + e)^3 + ((3*a^2*b^2 - 10*a*b^3 + 15*b^4)*tan(f*x + e)^4 + 3*a^4 - 10*a^3*b + 15*a^2*b^2 + 2*(
3*a^3*b - 10*a^2*b^2 + 15*a*b^3)*tan(f*x + e)^2)*sqrt(-a/b)*log((b^2*tan(f*x + e)^4 - 6*a*b*tan(f*x + e)^2 + a
^2 - 4*(b^2*tan(f*x + e)^3 - a*b*tan(f*x + e))*sqrt(-a/b))/(b^2*tan(f*x + e)^4 + 2*a*b*tan(f*x + e)^2 + a^2))
+ 4*(3*a^4 - 10*a^3*b + 7*a^2*b^2)*tan(f*x + e))/((a^3*b^4 - 3*a^2*b^5 + 3*a*b^6 - b^7)*f*tan(f*x + e)^4 + 2*(
a^4*b^3 - 3*a^3*b^4 + 3*a^2*b^5 - a*b^6)*f*tan(f*x + e)^2 + (a^5*b^2 - 3*a^4*b^3 + 3*a^3*b^4 - a^2*b^5)*f), -1
/16*(16*b^4*f*x*tan(f*x + e)^4 + 32*a*b^3*f*x*tan(f*x + e)^2 + 16*a^2*b^2*f*x + 2*(5*a^3*b - 14*a^2*b^2 + 9*a*
b^3)*tan(f*x + e)^3 - ((3*a^2*b^2 - 10*a*b^3 + 15*b^4)*tan(f*x + e)^4 + 3*a^4 - 10*a^3*b + 15*a^2*b^2 + 2*(3*a
^3*b - 10*a^2*b^2 + 15*a*b^3)*tan(f*x + e)^2)*sqrt(a/b)*arctan(1/2*(b*tan(f*x + e)^2 - a)*sqrt(a/b)/(a*tan(f*x
 + e))) + 2*(3*a^4 - 10*a^3*b + 7*a^2*b^2)*tan(f*x + e))/((a^3*b^4 - 3*a^2*b^5 + 3*a*b^6 - b^7)*f*tan(f*x + e)
^4 + 2*(a^4*b^3 - 3*a^3*b^4 + 3*a^2*b^5 - a*b^6)*f*tan(f*x + e)^2 + (a^5*b^2 - 3*a^4*b^3 + 3*a^3*b^4 - a^2*b^5
)*f)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**6/(a+b*tan(f*x+e)**2)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 4.32386, size = 290, normalized size = 1.9 \begin{align*} \frac{\frac{{\left (3 \, a^{3} - 10 \, a^{2} b + 15 \, a b^{2}\right )}{\left (\pi \left \lfloor \frac{f x + e}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (f x + e\right )}{\sqrt{a b}}\right )\right )}}{{\left (a^{3} b^{2} - 3 \, a^{2} b^{3} + 3 \, a b^{4} - b^{5}\right )} \sqrt{a b}} - \frac{8 \,{\left (f x + e\right )}}{a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}} - \frac{5 \, a^{2} b \tan \left (f x + e\right )^{3} - 9 \, a b^{2} \tan \left (f x + e\right )^{3} + 3 \, a^{3} \tan \left (f x + e\right ) - 7 \, a^{2} b \tan \left (f x + e\right )}{{\left (a^{2} b^{2} - 2 \, a b^{3} + b^{4}\right )}{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{2}}}{8 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^6/(a+b*tan(f*x+e)^2)^3,x, algorithm="giac")

[Out]

1/8*((3*a^3 - 10*a^2*b + 15*a*b^2)*(pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a*b)))/((
a^3*b^2 - 3*a^2*b^3 + 3*a*b^4 - b^5)*sqrt(a*b)) - 8*(f*x + e)/(a^3 - 3*a^2*b + 3*a*b^2 - b^3) - (5*a^2*b*tan(f
*x + e)^3 - 9*a*b^2*tan(f*x + e)^3 + 3*a^3*tan(f*x + e) - 7*a^2*b*tan(f*x + e))/((a^2*b^2 - 2*a*b^3 + b^4)*(b*
tan(f*x + e)^2 + a)^2))/f